Вакуум при производстве CPU. Зачем он нужен? Разбор | Портал о гаджетах и технологиях

Вакуум при производстве CPU. Зачем он нужен? Разбор

Сложно ли наклеить пленку на экран телефона? В целом, процедура то довольно простая — протер экран и быстро наклеил пленку! Но как же много пленок оказалось в помойке из-за маленьких частичек пыли, которые оказались между экраном и пленкой, при этом образовав отвратительный маленький пузырик воздуха!

Уверен, что такая ситуация знакома очень многим зрителям нашего канала. И мы тут говорим о том, чтобы просто наклеить пленку на телефон.

А теперь представьте, что вам надо нанести слой всего в несколько нанометров! Или нанести на кремниевую пластину рисунок будущего процессора с помощью экстремальной УФ литографии! Тут дело уже не только в пыли: любая неточность уже критична!

Чтобы не было дефектов должна быть идеальная чистота и абсолютно контролируемые условия. Как же это достигается? Как сделать условия осаждения контролируемыми? Это действительно сложная задача и частично ей занимается область под названием Вакуумная техника!

Что такое вакуум?

Давайте для начала поймем, что такое вакуум, что такое давление газа и как они связаны?

Представим себе стеклянную камеру идеально изолированную от внешней среды, где давление воздуха внутри такое же как снаружи, то есть 1 атмосфера. Что это значит?

Газ — это такое состояние вещества, когда молекулы движутся в каком-то объеме свободно, при этом занимая весь доступный объем. Эти молекулы газа находятся в постоянном и хаотичном движении — они как бешенные летают туда-сюда и сталкиваются друг с другом.

Но не только между собой — они еще и сталкиваются со стенками нашего стеклянного сосуда! Когда одна молекула стукается о стенку, то ничего особенного не происходит, но вот когда этих молекул много, то эти триллионы столкновений становятся уже существенными! Это и есть давление газа.

Я просто напоминаю что в одном кубическом метре газа при атмосферном давлении примерно 1 атм — это 2 на 10 в 25 степени молекул газа!

Вот столько: ≈ 26 875 000 000 000 000 000 000 000

Но когда эти столкновения внутри сосуда и снаружи равны, то это и значит что давление одинаковое! Столкновения снаружи и внутри друг друга компенсируют!

Но вот мы начинаем этот газ откачивать из нашей колбы и в идеальном случае, в идеальном вакууме, откачиваем до тех пор, пока газа в этом сосуде совсем не остается, то есть убрали все молекулы из объема.

При этом давление внутри стало равно нулю, а снаружи молекулы все также стукаются о внешние стенки нашей колбы, то есть наше стекло начинает сжиматься, потому что разница давления стала равна 1 атмосфере! Или равно примерно 1 кг на 1 квадратный сантиметр!

И если этот сосуд достаточно крепкий, то он выдержит это давление, а если нет, то происходит взрыв…

Также справедливо и обратное — если накачать слишком много газа в объем, то он может не выдержать, прямо как воздушный шарик с гелием, который надули слишком сильно. В общем, тут то мы и приходим к тому, что такое вакуум — это среда, где газа сильно меньше чем в атмосфере, то есть давление сильно меньше, чем атмосферное!

Зачем нужен вакуум?

Ну а зачем вакуум вообще нужен и при чем тут производство процессоров?

Дело в том, что при производстве нужны минимальные загрязнения и максимальный контроль. Да и для того, чтобы вообще многие процессы из нашей святой троицы осаждения, травления и литографии работали — необходимы низкие давления.

Если вы помните, то вакуум нужен для электронных микроскопов и для гигантских установок экстремальной ультрафиолетовой литографии, ведь ультрафиолетовое излучение рассеивается в воздухе, как и луч электронов в электронном микроскопе.

Не говоря уж о научном оборудовании, которое может выглядеть как-то так. Внутри всех этих железяк нужно создать очень низкое давление.

Вакуум при производстве CPU. Зачем он нужен? Разбор

Вакуум при производстве CPU. Зачем он нужен? Разбор

Вообще идеальным примером тут может служить обычная лампа накаливания. Внутри первых ламп был вакуум! То есть инженеры пытались максимально продлить срок службы вольфрамовой нити, максимально избавив ее от любого газа, с которым она может взаимодействовать!

Вакуум при производстве CPU. Зачем он нужен? Разбор

Современные же лампы накаливания заполнятся избыточным инертным газом, то есть таким газом, который с Вольфрамовой нитью не взаимодействует.

Поняли к чему я клоню?

Это и есть создание контролируемых условий для проведения определенных процессов. Сначала из колбы убрали воздух со всей той гадостью, которую он в себе несет: с грязью, пылью и самое главное — убрали кислород. Ведь именно он реагирует с Вольфрамом, и при нагреве нить просто сгорит.

Так вот при производстве процессоров надо сделать тоже самое — надо либо полностью убрать любой газ, а в особенности кислород из объема, либо сначала убрать, а потом заполнить рабочий объем специальным газом!

Просто представьте, когда мы говорим о транзисторах размером в пару десятков нанометров — любая, даже самая маленькая частичка пыли, может испортить тысячи транзисторов.

Тут кстати вакуум играет не самую важную роль, гораздо лучше в этом помогает сделать так называемые «чистые комнаты»!

А кислород вообще главный враг! Ведь при осаждении различных материалов используются пары и активные ионы различных металлов, а они только и мечтают как бы с этим кислородом связаться, то есть как бы им окислиться!

Вот осаждаете вы алюминий, а он бац и стал оксидом алюминия, и уже вместо проводника он стал изолятором, тем самым испортив вам контакт транзистора! В общем, надо максимально избавиться от воздуха в установках на производстве, а как?

Как создается вакуум?

Ну вот наконец-то мы и переходим к самому интересному. Как создать вакуум?

Тут то вы очевидно ответите, что все очень просто — надо просто откачать газ: подключил насос и выкачивай свой воздух сколько влезет! Частично вы правы, но все, как обычно, чуть-чуть сложнее.

Мы не зря тут вам напоминали, что такое газ и давление, и что газ занимает весь объем, доступный ему. Если у нас полностью изолированная колба, чтобы уменьшить в ней давление надо увеличить ее объем! Тогда образовавшийся новый объем мгновенно занимает газ, равномерно распределялась. Соответственно на единицу площади стенки в среднем попадает меньше молекул газа!

Вы ровно так и дышите между прочим! Грудные мышцы расширяют ваши легкие — увеличивая их объем, давление в легких понижается и воздух через нос или рот заполняет легкие. Потом мышцы сжимают легкие, давление повышается и газ выходит наружу.

А попробуйте зажать нос и закрыть рот, а потом вдохнуть или выдохнуть — вот поздравляю — вы создали изолированную колбу, о которой мы вам тут рассказываем!

То есть для откачки или иначе говоря для создания вакуума надо сначала увеличить объем, а потом этот объем просто изолировать!

И на производствах для этого используются специальные вакуумные насосы, которые ровно так и работают — посмотрите на пример так называемого мембранного насоса.

Вакуум при производстве CPU. Зачем он нужен? Разбор

Мембрана выгибается в одну сторону и объем увеличивается, заполняется газом из той области, которую мы откачиваем, потом мембрана выгибается в другую сторону, и газ выталкивается уже наружу, так как доступ обратно в камеру уже перекрыт.

По такому же принципу работают и так называемые роторные насосы. Они более мощные и могут создавать более глубокий вакуум, чем мембранные!

Вакуум при производстве CPU. Зачем он нужен? Разбор

Есть целая куча различных роторных насосов, но в целом принцип у них один и тот же — увеличили объем, отсекли его и выбросили газ с другой стороны!

Но тут мы сталкиваемся с новой проблемой!

Глубокий вакуум

Такие насосы могут откачать газ только до определенных давлений, а они, мягко говоря, все еще великоваты. Слишком много всякой ненужной гадости будет у вас в камере. Примерно в десять тысяч раз больше, чем хотелось бы! Надо создать более глубокий или иначе говоря высокий вакуум.

Кстати, оцените таблицу типов вакуума — в производстве обычно используется высокий вакуум, а например для детектора гравитационных волн LIGO надо было создать Экстремальный вакуум!

Вакуум при производстве CPU. Зачем он нужен? Разбор

И тут человечество пошло на много разных хитростей, но сейчас мы расскажем вам о двух самых классных для создания высокого вакуума.

Первые — это так называемые турбомолекулярные насосы! Они не создают новый объем, как это было с роторными насосами. Объем остается таким же!

Вакуум при производстве CPU. Зачем он нужен? Разбор

Но как же он тогда качает?

А дело все в том, что он работает как вентилятор! Молекулы газа стукаются о его лопасти и отскакивают от них только в определенных направлениях, то есть их просто как шарики выбивают из рабочей камеры!

Только для того, чтобы это начало работать — лопасти этого вентилятора надо раскрутить очень быстро.

Современные турбины крутятся со скоростями до полутора тысяч оборотов в секунду! Их даже стали делать на специальном магнитном подвесе, то есть лопасти просто висят на магнитной подушке и крутятся на бешеной скорости.

И самое интересное, что для корректной работы таких турбин необходимо производить откачку уже из выхлопа самой турбины. То есть получается такая своеобразная двухэтапная откачка рабочей камеры.

Использование турбин — это самый популярный метод откачки до высокого вакуума — именно он и используется в установках ASML для литографии! Мы такую турбину можем даже увидеть на рендере.

Вакуум при производстве CPU. Зачем он нужен? Разбор

Вакуум при производстве CPU. Зачем он нужен? Разбор

А какой же второй способ? Это так называемый крионасос. Иногда это специальный насос, а иногда это в общем-то даже не совсем насос как таковой.

Работает по принципу бокала с пивом, о котором мы вам уже рассказывали в материале о магии создания процессоров! На холодной поверхности водяной пар конденсируется! А если поверхность охладить очень сильно, то конденсироваться будет уже не только вода, но и все остальные газы из воздуха, в том числе и кислород. Он будет просто застревать на стенках!

Для этого часто применяют обычно жидкий азот у которого температура почти -200 градусов по цельсию, который закачивают в стенки специальной камеры. Молекулы газа, которые летают в объеме долетая до этой стенки просто на ней застревают и все.

Вакуум при производстве CPU. Зачем он нужен? Разбор

Вот такое вот элегантное и простое решение! Но само собой, что если перестать охлаждать, то весь газ вернется обратно в объем.

Выводы

Вакуум при производстве CPU. Зачем он нужен? Разбор

И конечно есть еще другие типы насосов — есть ионные и диффузионные насосы. Но они уже не такие популярные в целом, хотя выполняют все ту же функцию — понижают давление в камере.

При этом как и с лампочкой накаливания, зачастую после откачки рабочий объем в камере потом заполняется так называемым рабочим газом, то есть газом который необходим для проведения определенного технологического процесса! И иногда это кислород! Тот самый кислород, от которого мы изначально хотели избавиться. Просто первичная откачка позволяет добиться правильных условий процесса, ведь мы можем контролировать давление, концентрацию и поток кислорода. Все ради контроля процесса! И так на каждом этапе производства!

И без этих сложных и крутых технологических решений, о которых мы вам рассказываем в этой серии разборов, современный мир, которым мы его знаем сейчас, был бы совсем невозможен. Никаких процессоров и экранов!

Post Views:
289